
HIGH-LEVEL DATA RACES

Cyrille Artho and Armin Biere
Computer Systems Institute
ETH Zurich, Switzerland
{artho,biere}@inf.ethz.ch

Klaus Havelund
Kestrel Technology

NASA Ames Research Center,
Moffett Field, California USA
havelund@email.arc.nasa.gov

Key words: Java, multi-threading, data races, software verification, consistency

Abstract: Data races are a common problem in concurrent and multi-threaded programming. They are hard to detect
without proper tool support. Despite the successful application of such tools, experience shows that the notion
of data race is not powerful enough to capture certain types of inconsistencies occurring in practice. In this
paper we investigate data races on a higher abstraction layer. This enables us to detect inconsistent uses
of shared variables, even if no classical race condition occurs. For example, a data structure representing a
coordinate pair may have to be treated atomically. By lifting the meaning of a data race to a higher level, such
problems can now be covered. The paper defines the conceptsview andview consistencyto give a notation
for this novel kind of property. It describes what kinds of errors can be detected with this new definition,
and where its limitations are. It also gives a formal guideline for using data structures in a multi-threaded
environment.

1 INTRODUCTION

Multi-threaded, or concurrent, programming is be-
coming increasingly popular in enterprise applica-
tions and information systems (Artho and Biere,
2001; Sun Microsystems, 2002). The Java program-
ming language (Arnold and Gosling, 1996) explicitly
supports this paradigm (Lea, 1997). Multi-threaded
programming, however, provides a potential for intro-
ducing intermittent concurrency errors that are hard to
find using traditional testing. The main source of this
problem is that a multi-threaded program may exe-
cute differently from one run to another due to the ap-
parent randomness in the way threads are scheduled.
Since testing typically cannot explore all schedules,
some bad schedules may never be discovered. One
kind of error that often occurs in multi-threaded pro-
grams is adata race, as defined below. In this paper
we shall go beyond the traditional notion of what we
shall refer to as low-level data races, and introduce
high-level data races, together with an algorithm for
detecting them. The algorithm has been implemented
in the Java PathExplorer (JPaX) tool (Havelund and
Roşu, 2001) (Goldberg and Havelund, 2002) (Ben-
salem and Havelund, 2003), which provides a general
framework for instrumenting Java programs, and for

monitoring and analyzing execution traces. In partic-
ular JPaX contains algorithms for detecting problems
in multi-threaded programs, such as data races and
deadlocks (Bensalem and Havelund, 2003). Although
JPaX analyzes Java programs, the principles and the-
ory presented here are universal and apply in full to
concurrent programs written in languages like C and
C++ as well (Nichols et al., 1998).

1.1 Low-level Data Races

The traditional definition of a data race is as follows
(Savage et al., 1997):

A data race occurs when two concurrent threads
access a shared variable and when at least one
access is a write, and the threads use no explicit
mechanism to prevent the accesses from being
simultaneous.

Consider for example two threads, that both access a
shared object containing a counter variablex, and as-
sume that both threads call anincrease()method on
the object, which increasesx by 1. The increase()
method is compiled into a sequence of bytecode in-
structions (loadx to the operand stack, add 1, write
back the result). The Java Virtual Machine (JVM) ex-
ecutes this sequence non-atomically. Suppose the two

1

threads callincrease()at nearly the same time and that
each of the threads execute theload instruction first,
which loads the value ofx to the thread-local operand
stack. Then they will both add 1 to the original value,
which results in a combined increment of 1 instead of
2. We shall refer to this traditional notion of data race
as alow-level data race, since it focuses on a single
variable.

The standard way to avoid low-level data races on
a variable is to protect the variable with a lock: all ac-
cessing threads must acquire this lock before access-
ing the variable, and release it again after. In Java,
methods can be defined assynchronized which
causes a call to such a method to lock the current ob-
ject instance. Return from the method will release the
lock. Java also provides an explicit statement form
synchronized(obj) {stmt}, for taking a lock on
the objectobj, and executing statementstmtprotected
under that lock. If the above mentionedincrease()
method is declaredsynchronized , the low-level
data race cannot occur.

Several algorithms and tools have been developed
for analyzing multi-threaded programs for low-level
data races. The Eraser algorithm (Savage et al., 1997),
which has been implemented in the Visual Threads
tool (Harrow, 2000) to analyze C and C++ programs,
is an example of a dynamic algorithm that examines a
program execution trace for locking patterns and vari-
able accesses in order to predict potential data races.
The Eraser algorithm maintains alock setfor each
variable, which is the set of locks that have been
owned by all threads accessing the variable in the
past. Each new access causes a refinement of the
lock set to the intersection of the lock set with the
set of locks currently owned by the accessing thread.
The set is initialized to the set of locks owned by
the first accessing thread. If the set ever becomes
empty, a data race is possible. Another commercial
tool performing low-level data race analysis is JProbe
(Sitraka, 2000).

1.2 High-level Data Races

A program may be inconsistent even when it is free
of low-level data races, where we consider the set of
locks protecting a single variable. In this paper we
shall turn this around and study thevariable setas-
sociated to alock. This notion makes it possible to
detect what we shall refer to ashigh-level data races.
The inspiration for this problem was originally due to
a small example provided by Doug Lea (Lea, 2000).
It is presented in modified form in Sec. 2. It defines
a simple class representing a coordinate pair with two
componentsx andy. All accesses are protected by
synchronization onthis , using synchronized
methods. Therefore, data race conditions on a low
level are not possible. As this example will illustrate,

there can still be data races on a higher level, and this
can be detected as inconsistencies in the granularity of
variable setsassociated to locks in different threads.
The algorithm for detecting high-level data races is a
dynamic execution trace analysis algorithm like the
Eraser algorithm (Savage et al., 1997).

As a realistic example of a high-level data race sit-
uation, we shall illustrate a problem that was detected
in NASA’s Remote Agentspace craft controller (Pell
et al., 1997). The problem was originally detected us-
ing model checking, as described in (Havelund et al.,
2001). The error was very subtle, and was originally
regarded hard to find without actually exploring all
execution traces as done by a model checker. As it
turns out, it is an example of a high-level data race,
and can therefore be detected with the low-complexity
algorithm presented in this paper.

Control
commands

Lock
property

State
change

Task
interrupt

false

false

true

true

Lock
event

System
state

.

.

.

.

.

Spacecraft

Property lock table
Monitors

Daemon

Tasks
A

B

C

Z OFF

0

ON

10

Figure 1: The Remote Agent Executive

The Remote Agent is an artificial-intelligence-
based software system for generating and executing
plans on board a space craft. A plan essentially spec-
ifies a set of tasks to be executed within certain time
constraints. The plan execution is performed by the
Executive. A sub-component of the Executive is re-
sponsible for managing the execution of tasks, once
the tasks have been activated. The data structures
needed for managing task execution are illustrated in
Fig. 1. The state of the spacecraft (at any particular
point) can be considered as an assignment of values to
a fixed set of variables, each corresponding to a com-
ponent sensor on board the space craft. The spacecraft
maintains a currentsystem state. The termpropertyis
used to refer to a particular assignment for a particular
variable. A task may require that specific properties
hold during its execution. Upon the start of the task, it
first tries to lock those properties it requires in alock
table. For example, a task may requireB to beON.
Now other threads cannot requestB to beOFF as long

2

Task Daemon

synchronized (table) {
 table[N].value = V;

}

/* achieve property */

synchronized (table) {

 table[N].achieved = true;
}

synchronized (table) {
 if (table[N].achieved &&

 system_state[N] != table[N].value) {

 issueWarning();
 }
}

Figure 2: The synchronization inconsistency between a task and the daemon.

as the property is locked in the lock table. Next, the
task tries to achieve this property (changing the state
of the space craft, and thereby the system state), and
when it is achieved, the task sets a flagachievedto
true in the lock table, which has beenfalseuntil then.

A Daemonconstantly monitors the lock table, and
checks that:if a property’s flagachievedis true, then
it must be a true property of the space craft, and hence
true in the system state. Violations of this property
may occur by unexpected events on board the space
craft. The daemon wakes up whenever events occur,
such as when the lock table or the system state are
modified. In case an inconsistency is detected, the
involved tasks are interrupted.

The relevant code from the task and the daemon
is illustrated in Fig. 2, using Java syntax (The Remote
Agent was coded in LISP). The task contains two sep-
arate accesses to the lock table, one where it updates
the value and one where it updates flagachieved. The
daemon on the other hand accesses all these fields in
one atomic block. This can be described as an incon-
sistency in lock views, as described below, and actu-
ally presents an error potential.

The error scenario is as follows: suppose the task
has just achieved the property, and is about to execute
the second synchronized block, setting flagachieved
to true. Suppose now however, that suddenly, due to
unpredicted events, the property is destroyed on board
the space craft, and hence in the system state, and that
the daemon wakes up, and performs all checks. Since
flag achievedis false, the daemon reasons incorrectly
that the property is not supposed to hold in the system
state, and hence it does not detect any inconsistency
with the lock table (although conceptually now there
is one). Only then the task continues, and sets flag
achievedto true. The result is that the violation has
been missed by the daemon.

Detecting this error using normal testing is very
hard since it requires not only to execute the just de-
scribed interleaving (or a similar one), but it also re-
quires the formulation of a correctness property that
can be tested for, and which is violated in the above

scenario. However, regarding this as a view inconsis-
tency problem allows us to find the error without actu-
ally executing this particular interleaving, and it does
not require a requirement specification. The view in-
consistency in this example can be described as fol-
lows:

The daemon accesses the value and flagachieved
in one atomic block, while the task accesses
them in two different blocks. Hence, the dae-
mon has viewv1 = {value, flag} while the task
has viewsv2 = {value} andv3 = {flag}. This
is view-inconsistent since the task’s views form
disjoint subsets of the daemon view.

This view inconsistency is in itself not an error. How-
ever, in the above example it is a symptom that if
pointed out may direct the programmer’s attention to
the real problem, that property achievement and set-
ting flagachievedare not done in one atomic block1.
More formal and generic definitions of view inconsis-
tency are presented in Sec. 2 and 3.

1.3 Outline

The paper is organized as follows. Sec. 2 introduces
the problem of high-level data races. Sec. 3 presents
the concepts for detecting high-level data races. The
JPaX framework for analyzing Java programs is de-
scribed in Sec. 4. Sec. 5 describes the experiments
carried out. Sec. 6 gives an overview of related work.
Sec. 7 outlines future work and Sec. 8 concludes the
paper.

2 INTUITION

Consistent lock protection for a shared field ensures
that no concurrent modification is possible. However,

1Note that repairing the situation is non-trivial since
achieving properties may take several clock cycles, and it
is therefore not desirable to hold the lock on the table dur-
ing this process.

3

class Coord {
 double x, y;
 public Coord(double px, double py) { x = px; y = py; }

 synchronized double getX() { return x; }

 synchronized double getY() { return y; }
 synchronized Coord getXY() { return new Coord(x, y); }
 synchronized void setX(double px) { x = px; }

 synchronized void setY(double py) { y = py; }

 synchronized void setXY(Coord c) { x = c.x; y = c.y; }
}

Figure 3: TheCoord class encapsulating points with x and y coordinates.

Threadt1 Threadt2 Threadt3 Threadt4

synchronized (c) {
 access(x);
 access(y);

}

synchronized (c) {
 access(x);
}

synchronized (c) {

 access(x);
}
synchronized (c) {

 access(y);

}

synchronized (c) {

 access(x);
}
synchronized (c) {

 access(x);

 access(y);
}

Figure 4: One thread using a pair of fields and three other threads accessing components individually.

this only refers to low-level access to the fields, not
their entire use or their use in conjunction with other
fields. The remainder of this paper assumes detection
of low-level data races is covered by the Eraser algo-
rithm (Savage et al., 1997), which can be applied in
conjunction with our analysis.

Fig. 3 shows a class implementing a two-
dimensional coordinate pair with two fieldsx, y,
which are guarded by a single lock. If onlygetXY ,
setXY , and the constructor are used by any thread,
the pair is treated atomically. However, the versatility
offered by the other accessor (get /set) methods is
dangerous: if a thread only usesgetXY andsetXY
and relies on complete atomicity of these operations,
threads using the other accessor methods may falsify
this assumption.

Imagine a case where one thread reads both coordi-
nates while another one sets them to zero. If the write
operation occurs in two phases,setX andsetY , the
other thread may read anintermediate resultwhich
contains the value ofx already set to zero but still the
originaly value. This is clearly an undesired and often
unexpected behavior. We will use the termhigh-level
data raceto describe this kind of scenario.

Nevertheless, there exist scenarios where some of
the other access methods are allowed and pair-wise
consistency is still maintained. The novel concept of
view consistencycaptures this notion of consistency
while allowing partial accesses. In previous work
(Savage et al., 1997), only the use oflocks for each

variablehas been considered. The opposite perspec-
tive, the use ofvariables under each lock,is the core
of our new idea.

Fig. 4 shows another example with four threads,
which is abbreviated for better readability. Read-
ing and writing are abstracted asaccess(f) ,
where f is a shared field. Calls of synchronized
methods offering access protection are represented
usingsynchronized(lock) {access(f); } as
an abstraction of the inlined method. Thread creation
is not shown. Control structures within threads are
hidden as well. Furthermore, it is assumed that each
field accessed by a thread is a reference to a shared
object, visible to all threads.

Initially, we only consider the first two threadst1
andt2. It is not trivial to see whether an access con-
flict occurs or not. As long ast2 does not usey
as well, it does not violate the first thread’s assump-
tion that the coordinates are treated atomically. Even
thought1 accesses the entire pair{x, y} atomically
andt2 does not, the access tox alone can be seen as
a partial read or partial write. A read access tox may
be interpreted as reading{x, y} and discardingy; a
write access may be seen as writing tox while leav-
ing y unchanged. So both threadst1 andt2 behave in
a consistent manner.

Each thread is allowed to use only a part of the co-
ordinates, as long as that use is consistent. Inconsis-
tencies might arise with threadt3, which usesx in
one operation andy in another operation, releasing

4

the lock in between. If, for example, threadt3 reads
its data in two parts, with another thread liket1 writ-
ing to it in between,t3 may obtain partial values cor-
responding to twodifferent global states. If, on the
other hand, threadt3 writesits data in two parts, other
threads, liket1, may read data corresponding to anin-
termediatestate.

Since both read and write accesses result in an er-
ror, we do not have to distinguish between the two
kinds of access operations, assuming that shared val-
ues are not read-only. The difficulty in analyzing such
inconsistencies lies in the wish to still allow partial ac-
cesses to sets of fields, like the access tox of thread
t2.

As an example of a situation which at first sight ap-
pears to provide a conflict, but which we shall regard
as safe, consider the situation betweent1 andt4. This
could potentially be regarded as a conflict. However,
observingt4, the second synchronization statement is
completely self contained, and accesses in addition to
y everything the first synchronization statement ac-
cesses (x). Consequently, the first synchronization
statement int4 likely represents an operation that does
not needy (whether read or write). Therefore, the
two synchronization operations are unrelated and can
be interleaved with the atomic synchronization state-
ment int1 without interfering with the operations of
t4 onx andy.

On a more formal basis,t4 is safe because the set of
variables accessed in the first synchronization state-
ment oft4 is a subset of the set of variables accessed
in its second synchronization statement. Put differ-
ently, the variable sets form achain. Generally, a set
F of fields of a threadt is atomic if they are accessed
in a synchronization statement int. A high-level data
race occurs when a thread has an atomic set of fields
F and another thread has atomic setsG1 andG2 such
their overlaps withF do not form a chain. This will
be formalized in the next section.

3 VIEW CONSISTENCY

This section definesview consistency.It lifts the
common notion of a data race on a single shared vari-
able to a higher level, covering sets of shared variables
and their uses.

3.1 Views

A lock guardsa shared field if it is held during an ac-
cess to that field. The same lock may guard several
shared fields. Views express what fields are guarded
by a lock. LetI be the set of object instances gener-
ated by a particular run of a Java program. ThenF is
the set of all fields of all instances inI.

A viewv ∈ P(F) is a subset ofF . Let l be a lock,
t a thread, andB(t, l) the set of allsynchronized
blocks using lockl executed by threadt. For b ∈
B(t, l), a view generated byt with respect tol, is
defined as the set of fields accessed inb by t. The
set of generated viewsV (t) ⊆ P(F) of a threadt is
the set of all viewsv generated byt. In the previous
example in Fig. 4, threadt1 using both coordinates
atomically generates viewv1 = {x, y} under lock
l = c. Threadt2 only accessesx alone underl, hav-
ing view v2 = {x}. Threadt3 generates two views:
V (t3) = {{x}, {y}}. Threadt4 also generates two
views:V (t4) = {{x}, {x, y}}.

3.2 Views in Different Threads

A view vm generated by a threadt is amaximal view,
iff it is maximal with respect to set inclusion inV (t):

∀v ∈ V (t) [vm ⊆ v → vm = v]

Let M(t) denote the set of all maximal views of
threadt. Only two views which have fields in com-
mon can be responsible for a conflict. This obser-
vation is the motivation for the following definition.
Given a set of viewsV (t) generated byt and a view
v′ generated by another thread, theoverlapping views
of t with v′ are all non-empty intersections of views
in V (t) with v′:

overlap(t, v′) ≡ {v′ ∩ v | (v ∈ V (t))∧ (v∩ v′ 6= ∅)}
A set of viewsV (t) is compatiblewith the maximal
view vm of another thread iff all overlapping views of
t with vm form a chain:

compatible(t, vm) iff
∀v1, v2 ∈ overlap(t, vm) [v1 ⊆ v2 ∨ v2 ⊆ v1]

View consistencyis defined as mutual compatibility
between all threads: A thread is only allowed to use
views that are compatible with the maximal views of
all other threads.

∀t1 6= t2, vm ∈ M(t1) [compatible(t2, vm)]

In the example in Fig. 4, we had

V (t1) = M(t1) = {{x, y}}
V (t2) = M(t2) = {{x}}
V (t3) = M(t3) = {{x}, {y}}
V (t4) = {{x}, {x, y}}
M(t4) = {{x, y}}

There is a conflict betweent1and t3 as stated, since
{x, y} ∈ M(t1) intersects with the elements inV (t3)
to {x} and{y}, which do not form a chain. A similar
conflict exists betweent3 andt4.

5

Threadt1 Threadt2 Incompatible views

1 ViewsV (t) {x}, {y} {x}, {y} noneMaximal viewsM(t) {x}, {y} {x}, {y}
2 ViewsV (t) {x, y} {x}, {y} {x} = {x, y} ∩ {x} ∈ M(t1) ∩ V (t2)

Maximal viewsM(t) {x, y} {x}, {y} {y} = {x, y} ∩ {y} ∈ M(t1) ∩ V (t2)

3 ViewsV (t) {x, y}, {x}, {y} {x}, {y} {x} = {x, y} ∩ {x} ∈ M(t1) ∩ V (t2)
Maximal viewsM(t) {x, y} {x}, {y} {y} = {x, y} ∩ {y} ∈ M(t1) ∩ V (t2)

4 ViewsV (t) {x, y, z} {x, y}, {x} noneMaximal viewsM(t) {x, y, z} {x, y}

Table 1: Examples with two threads illustrating the principle of view consistency.

Threadt1 Threadt2 Threadt3 Incompatible views

5 V (t) {x, y} {x} {x}, {y} {x} = {x, y} ∩ {x} ∈ M(t1) ∩ V (t3)
M(t) {x, y} {x} {x}, {y} {y} = {x, y} ∩ {y} ∈ M(t1) ∩ V (t3)

6 V (t) {x, y} {x} {y} none
M(t) {x, y} {x} {y}

7 V (t) {x, y}, {x}, {y} {y, z}, {y}, {z} {z, x}, {z}, {x} none
M(t) {x, y} {y, z} {z, x}

8 V (t) {x, y}, {x}, {y, z} {y, z}, {y}, {z} {z, x}, {z}, {x} {y} = {y, z} ∩ {y} ∈ M(t1) ∩ V (t2)
M(t) {x, y}, {y, z} {y, z} {z, x} {z} = {y, z} ∩ {z} ∈ M(t1) ∩ V (t2)

Table 2: Examples with three threads illustrating the principle of view consistency.

The above definition ofview consistencyuses three
concepts: the notion ofmaximal views, the notion of
overlaps, and finally thecompatiblenotion, also re-
ferred to as thechainproperty. The chain property is
the core concept. Maximal views do not really con-
tribute to the solution other than to make it more effi-
cient to calculate and reduce the number of warnings
if a violation is found. The notion of overlaps is used
to filter out irrelevant variables.

3.3 Examples

A few examples help to illustrate the concept. Table
1 contains examples involving two threads. Note that
the outermost brackets for the set of sets are omitted
for better readability. Example 1 is the trivial case
where no thread treats the two fields{x}, {y} atom-
ically. Therefore there is no inconsistency. However,
if threadt1 treats{x, y} as a pair, and threadt2 does
not, we have a conflict as shown in example 2. This
even holds if the first thread itself uses partial accesses
on {x} or {y}, since this does not change its maxi-
mal view. Example 3 shows that case. Finally, exam-
ple 4 illustrates the case where threadt1 uses a three-
dimensional coordinate set atomically and threadt2
reads or updates different subsets of it. Since the sub-
sets are compatible as defined in Sec. 3.2, there is no
inconsistency.

Table 2 shows four cases with three threads. The
first entry, example 5, corresponds to the first three
threads in the example in Fig. 4 in Sec. 2. There,

threadt3 violatest1’s assumption about the atomicity
of the pair{x, y}. Example 6 shows a “fixed” version,
wheret3 does not access{x}. Finally, more com-
plex circular dependencies are thinkable with three
threads. Such a case is shown in example 7. Out
of three fields, each thread only uses two of them,
but they are used atomically. Because the accesses
of any thread only overlap with each other’s in one
field, there is no inconsistency. This example only re-
quires a minor change, shown in example 8, to make
it faulty: Assumet1’s third view were{y, z} instead
of {y}. This would contribute another maximal view
{y, z}, which conflicts witht2’s views{y} and{z}.

3.4 Soundness and Completeness

Essentially, this approach tries to infer what the devel-
oper intended when writing the multi-threaded code,
by discovering view inconsistencies. However, an in-
consistency may not automatically imply a fault in the
software. An inconsistency that does not correspond
to a fault is referred to as afalse positive(spurious
warning). Similarly, lack of a reported inconsistency
does not automatically imply lack of a fault. Such a
missing inconsistency report for an existing fault is
referred to as afalse negative(missed fault).

False positives are possible if a thread uses a
coarser locking than actually required by operation
semantics. This may be used to make the code shorter
or faster, since locking and unlocking can be expen-
sive. Releasing the lock between two independent

6

operations requires splitting onesynchronized
block into two blocks.

False negatives are possible if all views are con-
sistent, but locking is still insufficient. Assume a set
of fields that must be accessed atomically, but is only
accessed one element at a time by every thread. Then
no view of any thread includes all variables as one
set, and the view consistency approach cannot find the
problem. Another source of false negatives is the fact
that a particular (random) run through the program
may not reveal the inconsistent views.

The fact that false positives are possible means that
the solution is not sound. Similarly, the possibility
of false negatives means that the solution neither is
complete. This may seem surprising, but actually also
characterizes the Eraser low-level data race detection
algorithm (Savage et al., 1997) implemented in the
commercial Visual Threads tool (Harrow, 2000), as
well as the deadlock detection algorithm also imple-
mented in the same tool. The same holds for the sim-
ilar algorithms implemented in JPaX. The reason for
the usefulness of such algorithms is that they still have
a much higher chance of detecting an error than if one
relies on actually executing the particular interleaving
that leads to an error, without requiring much com-
putational resources. These algorithms are essentially
based on turning the property to be verified (in this
case: no high-level data races) into a more testable
property (view consistency). This aspect is discussed
in more detail in (Bensalem and Havelund, 2003) in
relation to deadlock detection.

4 ANALYSIS FRAMEWORK

The experiments were all made with JPaX
(Havelund and Roşu, 2001) (Goldberg and Havelund,
2002), a run-time verification tool consisting of two
parts: an instrumentation module and an observer
module. The instrumentation module produces an in-
strumented version of the program, which when exe-
cuted generates an event log with the information re-
quired for the observer to determine the correctness
of the examined properties. Fig. 5 illustrates the situ-
ation.

Instrumented
program

Event
analysis

Interpretation
Events

Observer

Figure 5: Structure of the run-time analysis: The in-
strumented program generates a series of events. The
observation of these events is divided into two stages:
an event analysis and an interpretation of events.

The observer used here only checks for high-level
data races. For these experiments, a new and yet to-
tally un-optimized version of JPaX was used. It in-
struments every field access, regardless of whether it
can be statically proven to be thread-safe. Because of
this, some data-intensive applications created log files
which grew prohibitively large (> 0.5 GB) and could
not be analyzed.

4.1 Java Bytecode Instrumentation

Part of JPaX is a very general and powerful instru-
mentation package for instrumenting Java bytecode
(Goldberg and Havelund, 2002). The requirements of
the instrumentation package include power, flexibil-
ity, ease of use, portability, and efficiency. Alternative
approaches were rejected, such as instrumenting Java
source code, using the debugging interface, and mod-
ifying the Java Virtual Machine because they violated
one or another of these requirements.

It is essential to minimize the impact of the instru-
mentation on program execution. This is especially
the case for real time applications, which may par-
ticularly benefit from this approach. Low-impact in-
strumentation may require careful trade-offs between
what is computed locally by the instrumentation and
the amount of data that need be transmitted to the
observer. The instrumentation package allows such
trades to be made by allowing seamless insertion of
Java code at any program point.

Code is instrumented based on aninstrument spec-
ification that consists of a collection of predicate-
action rules. A predicate is a filter on source code
statements. These predicates are conjunctions of
atomic predicates that include predicates that distin-
guish statement types, presence of method invoca-
tions, pattern-matched references to fields and local
variables and so on. The actions are specifications de-
scribing the inserted instrumentation code. Actions
are inserted where predicates evaluate to true. The
actions include reporting the program point (method,
and source statement number), a time stamp, the exe-
cuting thread, the statement type, the value of vari-
ables or an expression, and invocation of auxiliary
methods. Values of primitive types are recorded in
the event log, but if the value is an object, a unique
integer descriptor of the object is recorded.

The instrumentation has been implemented using
Jtrek (Cohen, 1999), a Java API that provides lower-
level instrumentation functionality. In general, use of
bytecode instrumentation, and use of Jtrek in particu-
lar, has worked out well, but there are some remaining
challenges with respect to instrumenting the concur-
rency aspects of program execution.

7

Thread 1

Thread 2

Thread 2

Thread 1

Action "monitorenter"

Location L1

Program instruction Reported action

monitorenter
Action "getfield"

Location L2

Program instruction Reported action

getfield

Action "monitorenter"

Location L1

Action "getfield"

Location L2

Thread 1 Thread 2

Figure 6: Interleaving events generated by the instrumented program.

4.2 Event Stream Format

All operations in the instrumented application writ-
ing to the event log have to be as fast as possible.
Among other factors, light-weight locking, incurring
as little lock contention as possible, helps achieving
this. When several pieces of information are logged
by the instrumentation, they are therefore recorded
separately, not atomically. As a result of this, one
event can generate several log entries. Log entries
of different threads may therefore be interleaved. The
contextual information, transmitted ininternal events,
include thread names, code locations, and reentrant
acquisitions of locks (lock counts). The event analy-
sis package maintains a database with the full context
of the event log.

Fig. 6 shows such a scenario: Thread 1 is obtain-
ing a lock, which is done with amonitorenter in-
struction in the Java bytecode. Thread 2 is accessing
a field, shown by thegetfield instruction. Both
events have been instrumented to record not only the
action itself, but also the exact location in the code
where the action took place. The two events can be
interleaved because they are not recorded atomically.

In order to allow a faithful reconstruction of the
events, each log entry includes the hash code of the
active thread creating the log entry. Therefore the
events can all be assigned to the original threads.

4.3 Observer Architecture

As described above, run-time analysis is divided into
two parts: instrumenting and running the instru-
mented program, which produces a series of events,
and observing these events. The second part, event
observation, can be split into two stages: event anal-
ysis, which reads the events and reconstructs the run-
time context, and event interpretation (see Fig. 7).
Note that there may be many event interpreters.

Reusing the context reconstruction module allows
for writing simpler event interpreters, which can
subscribe to particular event types made accessible
through an observer interface (Gamma et al., 1995)
and which are completely decoupled from each other.

Each event interpreter builds its own model of the
event trace, which may consist of dependency graphs
or other data structures. It is up to the event inter-
preter to record all relevant information for keeping a
history of the events, since the context maintained by
the event analysis changes dynamically with the event
evaluation. Any information that needs to be kept for
the final output, in addition to the context informa-
tion, needs to be stored by the event interpreter. If an
analysis detects violations of its rules in the model, it
can then show the results using stored data.

Besides clearly separating two aspects of event
evaluation, this approach has other advantages: Many
algorithms dealing with multi-threading problems re-
quire very similar information, namely lock and field
accesses. If a log generated by an instrumented pro-
gram includes at least this information, then several
analysis algorithms can share the same events. Fur-
thermore, splitting event observation into two steps
also allows writing an event analysis front-end for
event logs generated by tools other than JPaX, reusing
the back-end, event interpretation.

5 EXPERIMENTS

Four applications were analyzed. Those appli-
cations include a discrete-event elevator simulator,
and two task-parallel applications: SOR (Successive
Over-Relaxation over a 2D grid), and a Travelling
Salesman Problem (TSP) application. The latter two
use worker threads (Lea, 1997) to solve the global
problem. Many thanks go to Christoph von Praun for
kindly providing these examples, which were referred

8

Events

Observable events

Internal events

Event analysis

F
ilt

er
in

g

Result

Context

Model

Instrumented
program

Event
analysis

Interpretation
Events

Observer

Interpretation

Figure 7: The observer architecture.

Application Size Run time [s], Run time [s], Log size Warnings
[LOC] uninstrumented instrumented [MB] issued

Elevator 500 16.7 17.5 1.9 2
SOR 250 0.8 343.2 123.5 0
TSP, very small run (4 cities) 700 0.6 1.8 0.2 0
TSP, larger run (10 cities) 700 0.6 28.1 2.3 0
NASA’s K9 Rover controller 7000 − − − 1

Table 3: Analysis results for the given example applications.

to in (von Praun and Gross, 2001). In addition, a Java
model of a NASA planetary rover controller, named
K9, was analyzed. The original code is written in
C++ and contains about 35,000 lines of code, while
the Java model is a heavily abstracted version with
7,000 lines. Nevertheless, it still includes the origi-
nal, very complex, synchronization patterns.

Table 3 summarizes the results of the experiments.
All experiments were run on a Pentium III with a
clock frequency of 750 MHz using Sun’s Java 1.4
Virtual Machine, given 1 GB of memory. Only ap-
plications which could complete without running out
of memory were considered. It should be noted that
the overhead of the built-in Just-In-Time (JIT) com-
piler amounts to 0.4 s, so a run time of 0.6 s actually
means only about 0.2 s were used for executing the
Java application. The Rover application could not be
executed on the same machine where the other tests
were run, so no time is given there.

It is obvious that certain applications using large
data sets incurred a disproportionately high overhead
in their instrumented version. Most examples passed

the view consistency checks without any warnings re-
ported. For the elevator example, two false warnings
referred to two symmetrical cases. In both cases, three
fields were involved in the conflict. In threadt1, the
views V (t1) = {{1, 3}, {3}, {2, 3}} were inconsis-
tent with the maximal viewvm = {1, 2, 3} of t2.
While this looks like a simple case, the interesting as-
pect is that one method int1 included aconditional
access to field1. If that branch had been executed,
the view {2, 3} would actually have been{1, 2, 3},
and there would have been no inconsistency reported.
Since not executing the branch corresponds to reading
data and discarding the result, both warnings are false
positives.

One warning was also reported for the NASA K9
rover code. It concerned six fields which were ac-
cessed by two threads in three methods. The respon-
sible developer explained the large scope of the maxi-
mal view with six fields as an optimization, and hence
it was not considered an error. The Remote Agent
space craft controller was only available in LISP, so
it could not be directly tested. However, we have

9

successfully applied our tool to test cases reflecting
different constellations including that particular high-
level data race.

So far, experiments indicate that experienced pro-
grammers intuitively adhere to the principle of view
consistency. Violations can be found, but are not very
common, as shown in our experiments. Some opti-
mizations produce warnings that constitute no error.
Finally, the two false positives from the elevator ex-
ample show that the definition of view consistency
still needs some refinement.

6 RELATED WORK

6.1 Static Analysis and Model
Checking

Beyond Eraser, several static analysis tools exist that
examine a program for low-level data races. The
Jlint tool (Artho and Biere, 2001) is such an exam-
ple. The ESC (Detlefs et al., 1998) tool is also based
on static analysis, or more generally on theorem prov-
ing. It, however, requires annotation of the program,
and does not appear to be as efficient as the Eraser
algorithm in finding low-level data races. Dynamic
tools have the advantage of having more precise infor-
mation available in the execution trace. More heavy-
weight dynamic approaches include model checking,
which explores all possible schedules in a program.
Recently, model checkers have been developed that
apply directly to programs (instead of just on mod-
els thereof). For example, the Java PathFinder sys-
tem (JPF) developed by NASA (Havelund and Press-
burger, 2000; Visser et al., 2000), and similar systems
(Godefroid, 1997; Corbett et al., 2000; Holzmann and
Smith, 1999; Ball et al., 2001; Stoller, 2000). Such
systems, however, suffer from the state space explo-
sion problem. In (Havelund, 2000) we describe an ex-
tension of Java PathFinder which performs low-level
data race analysis (and deadlock analysis) in simula-
tion mode, whereafter the model checker is used to
demonstrate whether the data race (deadlock) warn-
ings are real or not. However, a data race, low-level
as well as high-level, can be hard to find with model
checking since it typically needs to cause a violation
of some explicitly stated property.

6.2 Database Concurrency

In database theory, shared data is stored in a database
and accessed by different processes. Each process
performstransactions, sequences of read and write
operations, on the data. A sequence of these oper-
ations corresponding to several transaction is called

a history. Based on this history, it can be inferred
whether each transaction isserializable, i.e., whether
its outcome corresponds to having run that transaction
in isolation (Papadimitriou, 1979; Bernstein et al.,
1987).

There are several parallels to multi-threaded pro-
grams, which share their data in memory instead of
in a database. Data races on shared fields in a multi-
threaded program can be be mapped to database ac-
cess conflicts on shared records. Lock protection in a
multi-threaded program corresponds to an encapsula-
tion of read and write accesses in a transaction. The
key problem addressed by this paper, having interme-
diate states accessible when writing non-atomically a
set of fields, maps to theinconsistent retrievalprob-
lem in databases. In such a history, one transaction
reads some data items in between another transac-
tion’s updates on these items. A correcttransaction
schedulerwill prevent such an access conflict, as long
as the accesses of each process are correctly encapsu-
lated in transactions.

High-level data races concern accesses to sets of
fields, where different accesses use different sets.
Similar problems may be seen in databases, if the pro-
grammer incorrectly defines transactions which are
too fine-grained. For example, assume a system con-
sists of a global database and an application using
reading and writing threads. The writing threads use
two transactions to update the database, the read-
ing threads access everything in a single transaction.
Here, the reader’s view is inconsistent, since it may
read an intermediate state of the system. If the writer
uses a single transaction, the fault is corrected. We
do not have experience whether this is actually an im-
portant problem in databases. It is likely that the ab-
straction provided by database query languages such
as SQL (Chamberlin and Boyce, 1976) prevents some
of these problems occurring.

Furthermore, concurrency theory as used for
databases and transaction systems is moving towards
richer semantics and more general operations, called
activities(Schuldt et al., 2002). Activities are atomic
events in such a system. Like in classical transactions,
low-level access conflicts are prevented by a sched-
uler which orders these operations. We are not sure
how high-level access conflicts have to be treated with
the richer semantics of activities.

Finally, database theory also uses the termviewun-
der different meanings. Specifically, the two terms
view equivalenceand view serializability are used
(Bernstein et al., 1987). These two terms are inde-
pendent of view consistency as defined in this paper.

6.3 Hardware Concurrency

In hardware design and compiler construction, Lam-
port has made a major step towards correct shared

10

memory architectures for multiprocessors (Lamport,
1979). He usessequential consistencyas a criterion
for ensuring correctness of interleaved operations. It
requires all data operations to appear to have executed
atomically. The order in which these operations exe-
cute has to be consistent with the order seen by indi-
vidual processes.

Herlihy and Wing use a different correctness condi-
tion calledlinearizability (Herlihy and Wing, 1990).
It provides the illusion that each operation applied by
concurrent processes takes effect instantaneously at
some point between its invocation and response. Lin-
earizability is a stronger property than sequential con-
sistency and has the advantage that it preserves real-
time ordering of operations. Although the theory is
very general, it is geared towards hardware and com-
piler construction because it allows exploiting special
properties of concurrent objects where transactions
would be too restrictive. However, it is not directly
applicable to multi-valued objects and seems to be in-
capable of capturing such high-level problems.

Lamport’s notion of sequential consistency is
rather restrictive and can be relaxed such that proces-
sors are allowed to read older copies of data as long as
the observed behavior is indistinguishable from a con-
ventional shared memory system (Afek et al., 1993).
Mittal and Garg extended this work and Herlihy’s lin-
earizability (Herlihy and Wing, 1990) to multi-object
operations, such as double-register compare and swap
operations (Mittal and Garg, 1998). Problems occur-
ring with such multi-object operations are very much
alike to our high-level data races. Unlike our ap-
proach, which deals with access patterns, their ap-
proach is concerned with the interleaving of opera-
tions and based on histories as known in database lit-
erature.

7 FUTURE WORK

There are many areas in which this work can be
expanded. They can be classified into technical and
theoretical problems.

On the technical side, there are still issues with the
run-time analysis tool JPaX. The code instrumenta-
tion and event generation does not always provide a
reliable identification of objects. It relies on name,
type, and hash code of objects. The latter can change
during execution, which causes difficulties in the ob-
server. Nonetheless, the hash code is the best identifi-
cation which can be obtained easily in Java.

Furthermore, the instrumentation has to be op-
timized with respect to statically provable thread-
safety. For instance, read-only or thread-local vari-
ables do not have to be monitored. Another optimiza-
tion would be to only execute logging instructions a

few times, instead of every time they are reached. A
few executions of each instruction (one by each in-
volved thread) is often enough to detect a problem.
Apart from that, the observer analysis could run on-
the-fly without event logging. This would certainly
eliminate most scalability problems. Additionally, the
current version reports the same conflict for different
instances of the same object class.

On the theoretical side, it is not yet fully under-
stood how to properly deal with nested locks. The
views of the inner locks cause conflicts with the larger
views of the outer locks. These conflicts are spuri-
ous. The elevator case study has shown that a slightly
different, control-flow independent definition of view
consistency is needed. Perhaps static analysis may be
better suited to check such a revised definition. Fi-
nally, we intend to study the relationship to database
concurrency and hardware concurrency theory.

8 CONCLUSIONS

Data races denote a concurrent access to shared
variables where an insufficient lock protection can
lead to a corrupted program state. Classical, or low-
level, data races concern accesses to single fields. Our
new notion of high-level data races deals with ac-
cesses to sets of fields which are related and should
be accessed atomically.

View consistency is a novel concept considering
the association of variable sets to locks. This permits
detecting high-level data races that can lead to an in-
consistent program state, similar to classical low-level
data races. Experiments on a small set of applications
have shown that developers seem to follow the guide-
line of view consistency to a surprisingly large extent.
We think this concept, now formally defined, captures
an important idea in multi-threading design.

REFERENCES

Afek, Y., Brown, G., and Merritt, M. (1993). Lazy Caching.
ACM Transactions on Programming Languages and
Systems, 15(1):182–205.

Arnold, K. and Gosling, J. (1996).The Java Programming
Language. Addison-Wesley.

Artho, C. and Biere, A. (2001). Applying Static Analy-
sis to Large-Scale, Multi-threaded Java Programs. In
Grant, D., editor,Proc. 13th ASWEC, pages 68–75.
IEEE Computer Society.

Ball, T., Podelski, A., and Rajamani, S. (2001). Boolean and
Cartesian Abstractions for Model Checking C Pro-
grams. InProc. TACAS’01: Tools and Algorithms
for the Construction and Analysis of Systems, LNCS,
Italy.

11

Bensalem, S. and Havelund, K. (2003). Reducing False
Positives in Runtime Analysis of Deadlocks. Submit-
ted for publication.

Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987).
Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley.

Chamberlin, D. and Boyce, R. (1976). SEQUEL: A struc-
tured English query language. InProceedings of the
1976 ACM SIGFIDET (now SIGMOD) workshop on
Data description, access and control, pages 249–264.

Cohen, S. (1999). Jtrek. Compaq,
compaq.com/java/download/jtrek .

Corbett, J., Dwyer, M. B., Hatcliff, J., Pasareanu, C. S.,
Robby, Laubach, S., and Zheng, H. (2000). Ban-
dera: Extracting Finite-state Models from Java Source
Code. InProc. 22nd International Conference on Soft-
ware Engineering, Ireland. ACM Press.

Detlefs, D. L., Rustan, K., Leino, M., Nelson, G., and Saxe,
J. B. (1998). Extended Static Checking. Technical
Report 159, Compaq Systems Research Center, Palo
Alto, California, USA.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Godefroid, P. (1997). Model Checking for Programming
Languages using VeriSoft. InProc. 24th ACM Sympo-
sium on Principles of Programming Languages, pages
174–186, France.

Goldberg, A. and Havelund, K. (2002). A User-Friendly
Package for Instrumenting Java Bytecode. Internal re-
port.

Harrow, J. (2000). Runtime Checking of Multithreaded
Applications with Visual Threads. In7th SPIN
Workshop, volume 1885 ofLNCS, pages 331–342.
Springer.

Havelund, K. (2000). Using Runtime Analysis to Guide
Model Checking of Java Programs. InSPIN Model
Checking and Software Verification, volume 1885 of
LNCS, pages 245–264. Springer.

Havelund, K., Lowry, M. R., and Penix, J. (2001). For-
mal Analysis of a Space Craft Controller using
SPIN. IEEE Transactions on Software Engineering,
27(8):749–765. An earlier version occurred in the
Proceedings of the 4th SPIN workshop, 1998, Paris,
France.

Havelund, K. and Pressburger, T. (2000). Model Checking
Java Programs using Java PathFinder.International
Journal on Software Tools for Technology Transfer,
2(4):366–381.

Havelund, K. and Roşu, G. (2001). Monitoring Java Pro-
grams with Java PathExplorer. InProc. First Inter-
national Workshop on Runtime Verification (RV’01),
volume 55 ofENTCS, pages 97–114, France. Elsevier
Science.

Herlihy, M. and Wing, J. (1990). Linearizability: A Cor-
rectness Condition for Concurrent Objects.ACM
Transactions on Programming Languages and Sys-
tems (TOPLAS), 12(3):463–492.

Holzmann, G. and Smith, M. (1999). A Practical Method
for Verifying Event-Driven Software. InProc.
ICSE’99, International Conference on Software En-
gineering, USA. IEEE/ACM.

Lamport, L. (1979). How to Make a Multiprocessor that
Correctly Executes Multiprocess Programs.IEEE
Trans. Comput., 9:690–691.

Lea, D. (1997). Concurrent Programming in Java.
Addison-Wesley.

Lea, D. (2000). Personal e-mail communication.

Mittal, N. and Garg, V. (1998). Consistency Conditions for
Multi-Object Distributed Operations. InInternational
Conference on Distributed Computing Systems, pages
582–599.

Nichols, B., Buttlar, D., and Farrell, J. P. (1998).Pthreads
Programming. O’Reilly.

Papadimitriou, C. (1979). The Serializability of Concur-
rent Database Updates.Journal of the ACM (JACM),
26(4):631–653.

Pell, B., Gat, E., Keesing, R., Muscettola, N., and Smith, B.
(1997). Plan Execution for Autonomous Spacecrafts.
In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 1234–1239. Nagoya,
Japan.

Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and
Anderson, T. (1997). Eraser: A Dynamic Data Race
Detector for Multithreaded Programs.ACM Transac-
tions on Computer Systems, 15(4):391–411.

Schuldt, H., Alonso, G., Beeri, C., and Schek, H.-J. (2002).
Atomicity and Isolation for Transactional Processes.
ACM Transactions on Database Systems (TODS),
27(1):63–116.

Sitraka (2000). JProbe.
www.sitraka.com/software/jprobe .

Stoller, S. D. (2000). Model-Checking Multi-threaded Dis-
tributed Java Programs. InSPIN Model Checking and
Software Verification, volume 1885 ofLNCS, pages
224–244. Springer.

Sun Microsystems (2002).Java 2 Platform Enterprise Edi-
tion Specification. Sun Microsystems.
java.sun.com/j2ee .

Visser, W., Havelund, K., Brat, G., and Park, S. (2000).
Model Checking Programs. InProc. ASE’2000: The
15th IEEE International Conference on Automated
Software Engineering. IEEE CS Press.

von Praun, C. and Gross, T. (2001). Object-Race Detection.
In OOPSLA, pages 70–82. ACM.

12

